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Abstract: Objective: We explored a novel model based on deep learning radiomics (DLR) to differ-
entiate Alzheimer’s disease (AD) patients, mild cognitive impairment (MCI) patients and normal
control (NC) subjects. This model was validated in an exploratory study using tau positron emission
tomography (tau-PET) scans. Methods: In this study, we selected tau-PET scans from the Alzheimer’s
Disease Neuroimaging Initiative database (ADNI), which included a total of 211 NC, 197 MCI, and
117 AD subjects. The dataset was divided into one training/validation group and one separate exter-
nal group for testing. The proposed DLR model contained the following three steps: (1) pre-training
of candidate deep learning models; (2) extraction and selection of DLR features; (3) classification
based on support vector machine (SVM). In the comparative experiments, we compared the DLR
model with three traditional models, including the SUVR model, traditional radiomics model, and
a clinical model. Ten-fold cross-validation was carried out 200 times in the experiments. Results:
Compared with other models, the DLR model achieved the best classification performance, with an
accuracy of 90.76% ± 2.15% in NC vs. MCI, 88.43% ± 2.32% in MCI vs. AD, and 99.92% ± 0.51% in
NC vs. AD. Conclusions: Our proposed DLR model had the potential clinical value to discriminate
AD, MCI and NC.

Keywords: Alzheimer’s disease; mild cognitive impairment; tau positron emission tomography;
deep learning radiomics

1. Introduction

Alzheimer’s disease (AD) is the most prevalent cause of dementia and the most signifi-
cant disease threatening the health of the elderly [1]. In the early stages of AD, patients often
exhibit mild cognitive damage, i.e., mild memory loss mild executive function decrements
(e.g., amyloid and tau pathological mechanism), and visuospatial impairment [2,3]. Mild
cognitive impairment (MCI) is an intermediate step between normal aging and demen-
tia [4], where patients start to appear memory impairment or other cognitive abnormalities,
but have not reached the severity of dementia. Mild cognitive impairment subjects are at
high-risk step for dementia [5]. Therefore, it is important to discriminate AD, MCI and
normal control (NC) individuals [6,7].

tau positron emission tomography (tau-PET) imaging technology has become increas-
ingly popular for the clinical diagnosis of AD and MCI [8–10]. The degree of brain tau
accumulation, as an objective biomarker, is strongly correlated with the severity of AD.
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Johnson et al. found that abnormally high cortical tau binding in the inferior temporal
gyrus was associated with clinical impairment [11]. Zhao et al. found that typical deposits
of tau appeared in the amygdala, entorhinal cortex, fusiform and parahippocampus in AD
brains [12]. La Joie et al. included 28 AD patients and 25 patients with a non-AD clinical
neurodegenerative diagnosis and found that tau-PET standard uptake value (SUVR) in the
whole brain showed excellent discrimination power (area under curve (AUC) = 0.92–0.94)
for diagnosing AD and MCI [13]. Sun et al. proposed a random forest diagnostic model for
the classification of NC, MCI and AD and achieved an accuracy of 81.6% [14]. However,
existing diagnosis models still have shortcomings, such as the need to manually extract
features from the region of interest (ROI) and to encode the extracted features, which often
requires tedious processes. Thus, an alternative approach is needed.

Deep learning radiomics (DLR) methods may be the alternative approach. DLR tech-
niques are able to learn high-dimensional features from medical images autonomously
and overcome shortcomings such as the cumbersome manual coding in traditional meth-
ods [15,16]. In recent years, DLR models have been used in AD studies [17,18]. For instance,
Basaia et al. used a deep neural network to classify AD and MCI based on cross-sectional
structural resonance imaging (MRI) images. The classification accuracy between AD and
NC was 98.2%, and the accuracy of progression from MCI to AD was 74.9% [19]. Lee et al.
employed a DLR model for AD classification based on MRI images and achieved an ac-
curacy of 95.35% [20]. Pan et al. proposed a novel convolutional neural network (CNN)
architecture called a multi-view separable pyramid network (MiSePyNet) and achieved
a classification accuracy of 83.05% in predicting the progression from MCI to AD [21].
Lu et al. used multiscale neural networks to identify subjects with pre-symptomatic AD
and achieved an accuracy of 82.51% based on 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET) images [22]. The above results showed the feasibility of DLR
models for diagnosing AD and MCI. However, whether DLR models could be used to
analyze tau-PET images is still unknown. Therefore, in this study, we assumed that the
DLR technique was also feasible for application to tau-PET images and would be useful
for the diagnosis of AD and MCI. To test the above hypothesis, we employed a novel DLR
model and validated it in an exploratory study.

2. Methods and Materials

Figure 1 shows the whole experimental process of this study, which includes the
following six steps: (1) subject enrollment; (2) tau-PET image preprocessing, including
registration, smoothing, and numerical normalization; (3) deep learning (DL) model pre-
training. During this session, several classical CNN models were selected and compared,
and the best one was finally selected for the next step; (4) extraction of DLR features;
(5) classification; (6) comparative experiments.

2.1. Subjects

The data used in this study were obtained from the ADNI cohort, which was jointly
funded by the National Institutes of Health and the National Institute on Aging in 2004.
ADNI is currently the definitive data center for AD-related disease research. In order to
obtain the pathogenesis of AD and find treatments, ADNI aims to study the pathogenesis
of AD and discover clinical, imaging, genetic and biochemical biomarkers that can be
used for the early detection of AD by collecting and organizing longitudinal data from
AD patients; the database currently has more than 2000 neuroimaging data. Specific
information is available on ADNI’s official website: http://adni.loni.usc.edu/about/,
accessed on 12 November 2021.

In this study, a total of 211 NC subjects and 197 MCI and 117 AD patients were
collected. All acquired subjects had both T1-weighted MRI images and tau-PET images. Of
these, 189 NC subjects and 173 MCI and 101 AD patients were used to train and validate
the DLR model. A separate 20 NC subjects and 18 MCI and 12 AD patients were used as
an independent external test group. The remaining 2 NC subjects and 6 MCI and 4 AD
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patients were not included in the training or testing groups because images were found to be
mutilated during pre-processing inspections. Demographic information (including gender,
age and education) and T1-weighted MRI and tau-PET (AV 1451) images were collected
for all participants. All subjects were also screened with the following neuropsychological
examinations: the Clinical Dementia Rating-Sum of Boxes (CDR-SB), the MMSE, the MoCA-
B, the 11-item and 13-item AD assessment cognitive scale (Alzheimer’s disease assessment
scale-cognitive, ADAS) and the ADAS delayed word recall (ADASQ4) subscale. Figure 2
shows the flow chart of the data inclusion/exclusion criteria.

Brain Sci. 2022, 12, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. The whole experimental process in this study. 

2.1. Subjects 
The data used in this study were obtained from the ADNI cohort, which was jointly 

funded by the National Institutes of Health and the National Institute on Aging in 2004. 
ADNI is currently the definitive data center for AD-related disease research. In order to 
obtain the pathogenesis of AD and find treatments, ADNI aims to study the pathogenesis 
of AD and discover clinical, imaging, genetic and biochemical biomarkers that can be used 
for the early detection of AD by collecting and organizing longitudinal data from AD 
patients; the database currently has more than 2000 neuroimaging data. Specific 
information is available on ADNI’s official website: http://adni.loni.usc.edu/about/, 
accessed on 12 November 2021. 

In this study, a total of 211 NC subjects and 197 MCI and 117 AD patients were 
collected. All acquired subjects had both T1-weighted MRI images and tau-PET images. 
Of these, 189 NC subjects and 173 MCI and 101 AD patients were used to train and 
validate the DLR model. A separate 20 NC subjects and 18 MCI and 12 AD patients were 
used as an independent external test group. The remaining 2 NC subjects and 6 MCI and 
4 AD patients were not included in the training or testing groups because images were 
found to be mutilated during pre-processing inspections. Demographic information 
(including gender, age and education) and T1-weighted MRI and tau-PET (AV 1451) 
images were collected for all participants. All subjects were also screened with the 
following neuropsychological examinations: the Clinical Dementia Rating-Sum of Boxes 
(CDR-SB), the MMSE, the MoCA-B, the 11-item and 13-item AD assessment cognitive 
scale (Alzheimer’s disease assessment scale-cognitive, ADAS) and the ADAS delayed 
word recall (ADASQ4) subscale. Figure 2 shows the flow chart of the data 
inclusion/exclusion criteria. 

The inclusion criteria of MCI were according to the criteria proposed by Jak and 
Bondi in 2014 [5]: (1) Scores obtained in at least one cognitive domain (memory, language 
or speed, executive function) were below the standard deviation of the age/education 
corrected normative mean; (2) scores in each of the three cognitive domains of memory, 
language and speed/executive function were found to be impaired; (3) Scores on the 
Functional Activities Questionnaire (FAQ) ≥ 9. The diagnosis of AD was primarily based 
on guidelines provided by the National Institute on Aging (NIA) and the Alzheimer’s 
Association (AA) working group. The ADNI institutional review board reviewed and 
approved the ADNI data collection protocol [7]. 

Figure 1. The whole experimental process in this study.

Brain Sci. 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 2. The flow chart of the data inclusion/exclusion criteria. 

2.2. Images Acquisition and Preprocessing 
The image acquisition process is described on the ADNI website at 

http://adni.loni.usc.edu/about/, accessed on 1 June 2021. All tau-PET images were prepro-
cessed using SPM12 software (https://www.fil.ion.ucl.auk/spm/software/spm12/, ac-
cessed on 20 September 2021.) implemented in MATLAB 2019b. The preprocessing steps 
were as follows. 

First, the DICOM images were uniformly converted to NIFTI format (.nii) using an 
image conversion tool for subsequent processing. The converted images were 3D image 
data with spatial structure information of the brain and retained the characteristic infor-
mation between tissue structures. Second, since subjects might have some head tilt prob-
lems during tau-PET image acquisition, the original correction function in SPM12 was 
used in this experiment reduce external differences. Furthermore, the T1 MRI images were 
used to align the tau-PET images so that the corresponding points at spatially uniform 
locations in the two types of images corresponded to each other. Smoothing and numeri-
cal normalization were performed in the next step. After completing the above processing, 
the images were smoothed to suppress the noise, and the numerical normalization could 
eliminate the differences between different instruments and reduce the number of subse-
quent calculations. In this experiment, the images were normalized according to the tau-
PET precipitated area in the cerebellar cortex region. After the above processing, 3D image 
data with a size of 91 × 109 × 91 voxels in the standard space were obtained. To speed up 
the training time of the DLR models, all images were further normalized to −1 to 1 interval. 
In the unidirectional slicing condition, the 3D images were axially sliced into 91 single-
channel images of size of 91 × 109 voxels, and the slices were filled and resampled to 224 
× 224 voxels using linear interpolation due to the need to retain as much information as 
possible and to satisfy the model input conditions. 

2.3. The Proposed DLR Model 
The proposed DLR model is depicted in Figure 3. The model consists of the following 

steps: (1) DLR model pre-training. Five classical CNN networks were used for model pre-
training. After comparison, we aimed to select the model with the best classification per-
formance; (2) DLR feature extraction and fusion. Based on the pre-trained model, DLR 
features were extracted before the final maximum pooling layer and combined with clin-
ical features; (3) classifiers: based on the features extracted above, support vector machine 
(SVM) was employed as the final classifier to obtain the classification results. The details 
of the model will be illustrated in the next sections. 

Figure 2. The flow chart of the data inclusion/exclusion criteria.

The inclusion criteria of MCI were according to the criteria proposed by Jak and Bondi
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normative mean; (2) scores in each of the three cognitive domains of memory, language
and speed/executive function were found to be impaired; (3) Scores on the Functional
Activities Questionnaire (FAQ)≥ 9. The diagnosis of AD was primarily based on guidelines
provided by the National Institute on Aging (NIA) and the Alzheimer’s Association (AA)
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working group. The ADNI institutional review board reviewed and approved the ADNI
data collection protocol [7].

2.2. Images Acquisition and Preprocessing

The image acquisition process is described on the ADNI website at http://adni.
loni.usc.edu/about/, accessed on 1 June 2021. All tau-PET images were preprocessed
using SPM12 software (https://www.fil.ion.ucl.auk/spm/software/spm12/, accessed
on 20 September 2021.) implemented in MATLAB 2019b. The preprocessing steps were
as follows.

First, the DICOM images were uniformly converted to NIFTI format (.nii) using an
image conversion tool for subsequent processing. The converted images were 3D image
data with spatial structure information of the brain and retained the characteristic informa-
tion between tissue structures. Second, since subjects might have some head tilt problems
during tau-PET image acquisition, the original correction function in SPM12 was used
in this experiment reduce external differences. Furthermore, the T1 MRI images were
used to align the tau-PET images so that the corresponding points at spatially uniform
locations in the two types of images corresponded to each other. Smoothing and numerical
normalization were performed in the next step. After completing the above processing,
the images were smoothed to suppress the noise, and the numerical normalization could
eliminate the differences between different instruments and reduce the number of sub-
sequent calculations. In this experiment, the images were normalized according to the
tau-PET precipitated area in the cerebellar cortex region. After the above processing, 3D
image data with a size of 91 × 109 × 91 voxels in the standard space were obtained. To
speed up the training time of the DLR models, all images were further normalized to
−1 to 1 interval. In the unidirectional slicing condition, the 3D images were axially sliced
into 91 single-channel images of size of 91 × 109 voxels, and the slices were filled and
resampled to 224 × 224 voxels using linear interpolation due to the need to retain as much
information as possible and to satisfy the model input conditions.

2.3. The Proposed DLR Model

The proposed DLR model is depicted in Figure 3. The model consists of the following
steps: (1) DLR model pre-training. Five classical CNN networks were used for model
pre-training. After comparison, we aimed to select the model with the best classification
performance; (2) DLR feature extraction and fusion. Based on the pre-trained model, DLR
features were extracted before the final maximum pooling layer and combined with clinical
features; (3) classifiers: based on the features extracted above, support vector machine
(SVM) was employed as the final classifier to obtain the classification results. The details of
the model will be illustrated in the next sections.

2.3.1. DLR Model Pre-Training

In recent years, CNN models have been increasingly applied to medical imaging
data and shown great potential in the classification tasks. In this study, we pre-trained
five common CNN models, including AlexNet, ZF-Net, ResNet18, ResNet34, and Incep-
tionV3 models.

(1) AlexNet demonstrates the excellent performance of deep CNN models. ReLU is
used as the activation function for its network structure, which employs interleaved
pooling in CNN models [23].

(2) ZF-Net is an improved CNN model based on AlexNet. Deconvolution is used to
analyze feature behavior and then to improve classification performance [24].

(3) The Inception models have more complex network structures and unique network
characteristics in comparison with AlexNet and ZF-Net. The Inception structure
is designed to use multiple convolutional or pooling operations to form a network
module. Inception V3, as the classic version of the Inception series, uses convolutional
decomposition and regularization to enhance the classification performance [25].

http://adni.loni.usc.edu/about/
http://adni.loni.usc.edu/about/
https://www.fil.ion.ucl.auk/spm/software/spm12/
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(4) The ResNet framework introduces the residual network structure to solve the gradient
disappearance or gradient explosion problem [26]. Different ResNet models, such
as ResNet18, ResNet34, ResNet50 and ResNet101, are depending on the number of
hidden layers. Figure 4 shows the structures of ResNet18 and ResNet34.
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The whole model pre-training process was divided into two parts: forward propaga-
tion and backward propagation. Before building the model, all tau-PET images were sliced
and tiled into two-dimensional images and adjusted to 224 × 224 pixels. Then, all data
were labeled using unique thermal coding. In the model pre-training step, all data were
passed into the network and then converged using the stochastic gradient descent (SGD)
algorithm and back propagated to update the model parameters. The final output of the
model pre-training process was used as the classification result.

In the model pre-training step, we set the learning rate to 1 × 10−2 and updated
the model parameters using an SGD optimizer with a batch size of 8. The number of
training iterations was set to 100. In addition, we performed data enhancement in the
training/validation group by flipping the images horizontally and adding Gaussian noise
to the input images to prevent the overfitting problem. The above experiments were per-
formed on GPU (graphics processing unit, RTX3090 accelerated by PyCharm 3.6 (JetBrains
from the Czech Republic, website: https://www.jetbrains.com/pycharm/, accessed on
17 February 2022)).

2.3.2. DLR Feature Extraction and Fusion

In contrast to traditional methods relying on manually ROI segmentation, DLR meth-
ods can automatically leverage tau-PET images to obtain high-dimensional DLR features
through supervised learning. After obtaining the best DL pre-trained model, we replaced
the final maximum pooling layer and fully connected layer with the SVM as the final classi-
fier. We extracted features from the last convolutional layer of each convolutional network.
These features were treated as DLR features. Then, the clinical information (gender, age,
education, CDR-SB, MoCA-B, MMSE, etc.) and the DLR features were combined as the
input for the SVM classifier.

2.3.3. Classifier

SVM was used as the classifier in this study. SVM is essentially a linear classifier that
maximizes intervals in feature space and is a binary classification model that has been
widely used with statistical and regression analysis species [27]. We used a linear kernel as
the kernel function.

2.4. Comparative Experiments

To demonstrate the superiority of the proposed DLR model, we compared the DLR
model with three existing models, including: (1) The clinical model. This model includes
demographic information and neuropsychological cognitive assessment tests as features
for classification; (2) the standard uptake value ratio (SUVR) model. We calculated SUVR
values of 10 tau-PET Meta ROIs as features for classification. The ten ROIs included in-
ferior temporal lobe, lingual gyrus, middle temporal lobe, occipital lobe, parietal lobe,
hippocampus, parahippocampus, posterior cingu late gyrus, precuneus and fusiform [28];
(3) the radiomics model. The radiomics features of the above 10 tau-PET Meta ROIs
were extracted as features for classification. In this experiment, we used the Radiomics
Toolkit (https://github.com/mvallieres/radiomics, accessed on 17 February 2022) to ex-
tract radiomics features. The feature extraction steps included wavelet band-pass filtering,
isotropic resampling, Lloyd–Max quantization, feature computation, and so on [29,30]. In
the comparison experiments, each model was with 10-fold cross-validation 200 times.

2.5. Statistical Analysis

In this study, chi-square tests and nonparametric rank sum tests were introduced
to compare differences in demographic characteristics between the training/validation
group and the test group. We used SPSS version 25.0 software (SPSS Inc., Chicago, IL,
USA) for all statistical analyses. Statistical results with p values < 0.05 were considered
significantly different.

https://www.jetbrains.com/pycharm/
https://github.com/mvallieres/radiomics
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3. Results
3.1. Subject Demographics

Table 1 shows the demographic results. There were differences in MoCA-B (p = 0.042)
and age (p = 0.03) in the NC group; ADAS11 (p = 0.020), ADAS13 (p = 0.034) and ADASQ4
(p = 0.044) in the MCI group and no significant differences in the AD group.

Table 1. Demographic information in this study.

NC Groups MCI Groups AD Groups

NC1 (Train) NC2 (Test) MCI1 (Train) MCI2 (Test) AD1 (Train) AD2 (Test)

Gender (M/F) 69/121 10/11 95/83 13/6 62/43 5/7
Age (year) 73.17 ± 7.64 76.76 ± 6.85 a 73.88 ± 7.46 70.93 ± 8.21 75.39 ± 7.94 76.76 ± 9.38
Education 16.66 ± 2.34 17.10 ± 2.04 16.39 ± 2.56 16.05 ± 2.37 15.49 ± 2.59 15.33 ± 2.61

MMSE 29.11 ± 1.23 29.14 ± 1.06 27.78 ± 2.21 27.37 ± 2.31 21.36 ± 4.98 21.58 ± 3.55
MoCA-B 26.36 ± 2.55 25.00 ± 2.73 a 23.24 ± 3.54 23.68 ± 3.16 16.15 ± 5.03 16.20 ± 4.64
CDR-SB 0.06 ± 0.23 0.10 ± 0.20 1.45 ± 1.03 2.37 ± 1.88 5.92 ± 3.32 5.13 ± 2.22
ADAS11 8.69 ± 2.57 8.93 ± 1.86 12.59 ± 4.11 14.25 ± 3.08 a 22.10 ± 7.29 25.03 ± 5.98
ADAS13 12.46 ± 4.12 13.25 ± 2.99 19.01 ± 6.11 21.51 ± 5.10 a 32.57 ± 8.64 36.11 ± 7.20
ADASQ4 2.51 ± 1.72 3.25 ± 2.00 4.77 ± 2.26 5.89 ± 2.35 a 8.06 ± 1.32 8.25 ± 1.76

a indicated that the p value was less than 0.05 in comparison results between the training/validation and test
groups under the same label.

All data are expressed as mean ± standard deviation. MMSE, Mini-mental State
Examination; MoCA-B, Montreal cognitive assessment-basic; CDR-SB, clinical dementia
rating sum of boxes; ADAS11 and ADAS13, the 11-item and 13-item AD assessment scale
cognitive; ADASQ4, the ADAS delayed word recall subscale.

For age, education, MMSE, MoCA-B, CDR-SB, ADAS11, ADAS13 and ADASQ4, a
nonparametric rank sum test was performed to compare differences in demographic and
clinical characteristics between the training/validation and test groups under each label,
i.e., NC, MCI and AD; gender was tested by chi-square between the two groups under
each label.

3.2. Pre-Training Results of Candidate DL Models

Tables 2–4 present the classification performance of the five candidate DL models. The
performance evaluation metrics include accuracy, sensitivity and specificity. ResNet18 had
the highest classification performance in NC vs. MCI, while ResNet34 had the highest
classification performance in MCI vs. AD and NC vs. AD. Therefore, ResNet34 was selected
to extract the corresponding DLR features.

Table 2. Classification performance in NC vs. MCI.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 94.26 ± 2.60 93.80 ± 2.92 94.70 ± 4.34

ZF-Net 94.28 ± 3.99 94.97 ± 3.64 93.66 ± 7.46

ResNet18 95.78 ± 2.50 94.99 ± 4.70 96.51 ± 2.98

ResNet34 95.32 ± 2.62 94.06 ± 3.74 96.49 ± 4.55

InceptionV3 93.82 ± 3.94 93.02 ± 4.93 94.54 ± 6.39

Test Group

AlexNet 81.25 ± 3.06 7947 ± 2.86 82.86 ± 3.83
ZF-Net 83.14 ± 3.24 78.37 ± 3.89 86.67 ± 5.95

ResNet18 87.25 ± 2.21 87.37 ± 2.24 87.14 ± 2.32
ResNet34 87.00 ± 2.14 85.79 ± 2.12 88.10 ± 2.52

InceptionV3 80.50 ± 3.58 77.89 ± 4.24 82.86 ± 5.79
The bold means this model performed best among others.



Brain Sci. 2022, 12, 1067 8 of 14

Table 3. Classification performance in MCI vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 93.18 ± 4.36 89.33 ± 10.55 95.41 ± 3.59

ZF-Net 93.55 ± 5.19 91.37 ± 7.20 94.77 ± 5.16

ResNet18 93.72 ± 3.40 90.47 ± 8.16 95.63 ± 4.22

ResNet34 95.28 ± 2.50 94.76 ± 4.96 95.59 ± 3.03

InceptionV3 97.45 ± 2.78 95.26 ± 6.77 98.75 ± 2.64

Test Group

AlexNet 79.68 ± 5.12 64.17 ± 7.32 89.47 ± 4.81
ZF-Net 79.68 ± 2.40 62.50 ± 3.78 90.52 ± 2.34

ResNet18 82.26 ± 1.78 73.33 ± 2.72 87.89 ± 2.14
ResNet34 82.26 ± 1.54 77.50 ± 2.48 85.26 ± 2.12

InceptionV3 79.68 ± 2.14 74.17 ± 3.32 83.16 ± 3.48
The bold means this model performed best among others.

Table 4. Classification performance in NC vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 97.36 ± 2.98 95.67 ± 7.25 98.27 ± 2.44

ZF-Net 98.30 ± 2.42 97.89 ± 5.09 98.53 ± 2.08

ResNet18 97.17 ± 2.05 96.87 ± 4.42 97.32 ± 2.60

ResNet34 98.10 ± 1.81 96.14 ± 5.87 99.14 ± 1.38

InceptionV3 94.37 ± 3.53 91.29 ± 8.66 96.16 ± 3.13

Test Group

AlexNet 94.24 ± 0.96 84.17 ± 2.63 100.0 ± 0.00
ZF-Net 93.64 ± 2.65 82.57 ± 7.34 100.0 ± 0.00

ResNet18 96.97 ± 2.91 91.70 ± 3.50 100.0 ± 0.00
ResNet34 96.97 ± 2.16 91.70 ± 2.83 100.0 ± 0.00

InceptionV3 95.08 ± 3.14 89.58 ± 5.30 98.21 ± 0.96
The bold means this model performed best among others.

3.3. Comparative Experiments
3.3.1. NC vs. MCI

Table 5 shows the classification results of the four models in NC vs. MCI. The DLR
model performed the best classification performance, with an accuracy of 90.76% ± 2.15%,
sensitivity of 94.17% ± 1.81% and specificity of 87.74% ± 2.54% in the test group. The
remaining three models performed obviously lower than the DLR model with accuracy
of 75.68% ± 2.63%, 72.02% ± 4.12% and 81.61% ± 3.23%; sensitivity of 62.32% ± 4.52%,
68.95% ± 9.22% and 83.11% ± 3.14%; and specificity of 86.67% ± 2.92%, 74.76% ± 7.11%
and 80.31% ± 6.38%.

Figure 5 provides the ROC curves of the four models. The AUC (mean ± SD) for the
DLR model reached 0.922 ± 0.021 and achieved the best performance among these models.

3.3.2. MCI vs. AD

Table 6 shows the classification performance of the four models in MCI vs. AD.
The DLR model showed accuracy of 88.43% ± 2.32%, sensitivity of 91.25% ± 2.05% and
specificity of 86.56% ± 2.86% in the test group. The remaining three models performed
obviously lower than the DLR model with accuracy of 78.33% ± 4.27%, 79.68% ± 5.72%
and 77.16% ± 2.95%; sensitivity of 62.67% ± 9.12%, 65.63% ± 10.97% and 88.17% ± 9.25%;
and specificity of 86.67% ± 2.92%, 88.95% ± 2.99% and 68.91% ± 7.64%, respectively.
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Table 5. The classification performance in NC vs. MCI.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 69.36 ± 7.94 63.53 ± 12.03 74.73 ± 10.74

Traditional radiomics model 69.05 ± 7.22 63.34 ± 13.34 74.28 ± 7.07

Clinical model 74.84 ± 8.48 80.13 ± 14.16 71.58 ± 12.05

DLR model 98.46 ± 1.71 98.47 ± 1.66 98.44 ± 1.76

Test Group

SUVR model 75.68 ± 2.63 62.32 ± 4.52 86.67 ± 2.92
Traditional radiomics model 72.02 ± 4.12 68.95 ± 9.22 74.76 ± 7.11

Clinical model 81.61 ± 3.23 83.11 ± 3.14 80.31 ± 6.38
DLR model 90.76 ± 2.15 94.74 ± 1. 81 87.74 ± 2.54

The bold means this model performed best among others.
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Table 6. The classification performance in MCI vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 74.41 ± 8.15 55.39 ± 15.64 86.06 ± 8.88

Traditional radiomics model 70.20 ± 7.83 57.79 ± 13.64 81.58 ± 9.83

Clinical model 90.84 ± 4.95 84.59 ± 11.04 94.45 ± 5.00

DLR model 96.27 ± 1.16 94.90 ± 4.81 97.89 ± 2.11

Test Group

SUVR model 78.33 ± 4.27 62.67 ± 9.12 86.67 ± 2.92
Traditional radiomics model 79.68 ± 5.72 65.63 ± 10.97 88.95 ± 2.99

Clinical model 77.16 ± 2.95 88.17 ± 9.25 68.91 ± 7.64
DLR model 88.43 ± 2.32 91.25 ± 2.05 86.56 ± 2.86

The bold means this model performed best among others.
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Figure 6 provided the ROC curves of these four models. The AUC (mean± SD) for the
DLR model reached 0.928 ± 0.024 and achieved the best performance among these models.
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3.3.3. NC vs. AD

Table 7 shows the classification performance of the four models in MCI vs. AD. The
DLR model showed an accuracy of 99.92% ± 0.51%, sensitivity of 99.78% ± 0.13%, and
specificity of 99.99% ± 0.14% in the test group. The remaining three models performed
obviously lower than the DLR model with accuracy of 90.66% ± 0.85%, 87.58% ± 3.63%
and 96.98% ± 0.21%; sensitivity of 74.96% ± 0.59%, 74.17% ± 9.43% and 92.78% ± 3.13%;
and specificity of 99.63% ± 1.33%, 95.24% ± 3.17% and 99.56% ± 2.17%.

Table 7. The classification performance in NC vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 86.06 ± 6.18 73.43 ± 14.21 93.04 ± 6.06

Traditional radiomics model 78.65 ± 0.08 57.67 ± 16.64 87.06 ± 8.80

Clinical model 91.96 ± 5.44 99.06 ± 2.98 86.65 ± 8.04

DLR model 99.31 ± 1.50 98.00 ±4.43 100.0 ± 0.00

Test Group

SUVR model 90.66 ± 0.85 74.96 ± 0.59 99.63 ± 1.33
Traditional radiomics model 85.58 ± 3.63 74.17 ± 9.43 95.24 ± 3.17

Clinical model 96.98 ± 0.21 92.78 ± 3.13 99.56 ± 2.17
DLR model 99.92 ± 0.51 99.78 ± 0. 13 99.99 ± 0.14

The bold means this model performed best among others.

Figure 7 provided the ROC curves of these four models. The AUC (mean± SD) for the
DLR model reached 0.996 ± 0.002 and achieved the best performance among these models.
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4. Discussion

DLR has been becoming a hot topic nowadays. Because of its excellent performance in
image recognition and processing, DLR models have been commonly used in computer-
aided disease diagnostic fields such lesion detection, quantitative lesion diagnosis, treat-
ment decision and prognosis expectation. In this study, we proposed a DLR model based
on tau-PET images to distinguish NC, MCI and AD. In contrast with other traditional
models, such as the SUVR model, the traditional radiomics model and the clinical model,
the DLR model achieved the best classification results.

To date, many studies have focused on the classification among NC, MCI and AD
using machine learning or DL models. For instance, Lange et al. performed a voxel-based
statistical analysis using FDG-PET images and achieved an AUC of 0.728 in the classification
of AD and NC [31]. Zhou et al. fused MRI and FDG-PET images and used radiomics
analysis to achieve an accuracy of 0.733 in the classification of MCI and NC [32]. Shu et al.
used radiomics features based on MRI images to classify MCI and AD and achieved an
accuracy of 0.807 [33].

Compared with previous studies, our proposed DLR model achieved superior clas-
sification results (90.76% ± 2.15% in NC vs. MCI, 88.43% ± 2.32% in MCI vs. AD, and
99.92% ± 0.51% in NC vs. AD). The reasons may be as follows: (1) The DLR model is able
to extract deeper image feature information from the pre-processed tau-PET images. As it
does not require an additional ROI segmentation step, it decreases errors and biases caused
by ROI segmentation; (2) the DLR model is subject to unavoidable external influences
such as individual differences and different parameters of imaging acquisition. In our
experiment, the DLR features and clinical information were combined together, so bias
caused by individual heterogeneities may be eliminated.

Although the DLR model achieved good classification results, several limitations
still exist. First, more supporting data are needed to verify the stability of our proposed
DLR model. In this research, all data were obtained from the ADNI database. It is worth
exploring whether our model works well with other databases. We only used the ADNI
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database, and the robustness of the results needs to be further verified. In the future, we
plan to incorporate other ethnic group data to further verify the effectiveness of our model.

Second, we only adopted five classical deep convolutional networks to obtain the final
DLR model. Although the ResNet models performed well in this classification experiment,
there may be other more suitable models that can be applied. Moreover, we used whole-
brain tau-PET images to train the model, and it remains to be explored whether extracting
ROIs would yield better results. In addition to this, in this experiment, the 3D tau-PET
images were segmented and sliced according to the axial direction. Whether better results
can be obtained using 3D images and convolutional networks at the 3D level requires
further validation and experiments. Finally, the model is trained on tau-PET images.
Combining with other modalities, such as amyloid PET, MRI and FDG-PET images may
improve the classification accuracy. In summary, the DLR model we proposed in this study
provides a certain help with the clinical diagnosis and differentiation of NC, MCI and AD.
Through this tau-Pet image-based DLR-assisted diagnosis of MCI, early intervention can be
carried out for the MCI population, which can improve the cognitive function of patients,
allow for early treatment and delay the conversion to dementia.

5. Conclusions

In this study, we developed a tau-PET-based DLR method for the subgroup diagnosis
of NC, MCI and AD. This study shows that the proposed DLR method can improve the
diagnostic performance of MCI and AD patients and provide the possibility of MCI-to-AD
conversion prediction. In the future, the DLR method will propose practical applications
for the computer-aided diagnosis of MCI and AD. We believe that more image modalities
based on our proposed DLR method will be applied in the differential diagnosis of NC,
MCI and AD.
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